DISATOM
SUPER ROM

“

;m..i_ml o\,] Ny .n_;'l mwﬂ] . 4:._] ey e

CHAPTER 1
OPERATION OF THE WCRKSPACE AND OTHER STACKS

I. The Workspace Stack

A four byte wide workspace stack is used by the ATOM to perform .
arithmetic functions and temporary storage of data being manipulated.
This stack is best explained by comparison with the 6502 machine code
stack, as the principle is very similar.

The page zero locations 16 through 51 inclusive are reserved for the
workspace stack, but since the information being stored is up to four
bytes wide (that is, a BASIC integer range of about + 2*10%49) this area
is split up into four parts:

el 11 ' , [12%] LSB—

¥ 21 - _ [133] 4 Byte wide
17— ' T 153 value
B3 11 _ - T 151 MsB—

= The workspace stack pointer

Just as the 6502 uses a stack from IFF thru 180 and points to the next
free location in it by the stack pointer register S , the workspace
stack alsorequires a pointer, and this is kept in location 4, as shown
above.

In the case of the 6502 stack, the pushing and pulling of the numbers on
the stack automatically changes S, the stack pointer, so that it points
to the next free location. With the workspace stack the equivalent
operation must be done by the software, by incrementing or
decrementing the contents of 4 as needed.

Many references are made in this book to routines which read or write
values to the workspace stack, and may be used fairly freely by those
writing machine code routines. One example is given below. It is
extracted from the ATOMROM at C99D, and is part of a routine to copy a
random number in location 8 thru B to the workspace stack.

C99D LDY @ 8
LDX #4
LDA #0001,Y
STA #25,X
LDA #0002,Y
STA #34,X
LDA #0003,Y
STA #43,X
LDA #0000,Y
STA #16,X
INX
STX #4

- -4
Note how the X register is loaded from location 4 and then used as an
Toffset to pointat thecurrent workspace stack values 16,X; 25,X; etc. .
' Note also that having pushed this data on the workspace stack, the w/s
stack pointer is incremented by INX ; STX #4 . This is directly
~equivalent to the machine code instruction PHA (push value on stack and
' change stack pointer S) except that the routine achieves this on a 4
"Byte wide basis.
' Machine code writers invoking existing ROM routines such as this
-should pay careful attention to the w/s stack pointer at 4, and always
_ensure that it stays inside the limits 0 thru E .,

' 11. The FOR/NEXT Stacks

—12640f | ' e | {24A] Variable
R _ _ ‘ . 1=A,2=B, etc.
124BL _ _ _ 255] LSBA
T]236 . 260 STEP size
261 _ _ 26B Stack
26Q L L1276} MSB-
12771 : 281} LSB~
- 1282 _128C Terminal Value
28D 297 Stack
— |238 ' 2A2jMSB-
E}U ZAD]LSB NEXT return
— [2AE] 2B& IMSB Address, i.e.

where FOR was
- FOR/NEXT stack pointer

_Each new FOR command increments the FOR/NEXT stack pointer to point at
the data relevant to this loop, viz. , the location of the FOR, the
Tterminal value, the STEP size,and the variable used.

A similar map can be drawn for DO/UNTIL and GOSUB/RETURN loops, though
—~there are obvious differences. See Chapter 3 - RAM usage.

CHAPTER 2
THE STRUCTURE OF THE INTERPRETER

Co00
BASIC

BASIC

F000 BASIC
F000 COS

D000 ‘ o
BASIC FLOATING POINT ROM

AQ00
BASIC : UTILITY ROM

Programs are stored inmemory as a series of strings, which in the
expanded ATOM are normally begun at #2900. Address 2900 contains an OD
which means "start of program. Each line of the program consists of a
two byte line number (stored as hex), followed by the actual ASCII code
for what ever you typed in. At the end of each line is an 0D, and the end
of program is marked by an FF (thus a program always ends in OD FF). A
program consisting only of 20 PRINT"HELLO";END would look like
this if we did an ASCII Dump starting at 2900: :

[oD[00 ooTTaIfPlR_mNLTj"]HTE[L[LLOI"|,-1EJN]DIOD]F'rj

P. &TOP would give 2915, since this is the next memory location after
the FF at the end of the program.

Strings being interpreted, either in direct mode or as a
programbeing run, are first checked by the C000 BASIC interpreter. If
they are valid, a match with the word in the string is found in the ROM,
and the appropriate routines are called for execution of the word.

If the CO00 interpreter can’'t find amatch for the string, then
it passes control! over to the F000 Basic interpreter. Again, valid
matches are sought, and executed if one is found.

If the F000 interpreter can't resolve the string, then
normally this would mean that an erroneous string is present, and an
ERRCR routine is called. However, before giving up all hope, a simple
test is made which looks for the signature of aROMat D00O (the FLT. PT.
RCM), and if the ROMis present, then the string is passed over to it for
interpretation.

By this means the ATOM can work with or without the FLT. PT. ROM

installed, and when one is plugged in, the machine is able to detect
that it is there.

o

Similarly, the FLT.PT. ROM contains a test that examines the
UTILITY socket at ACOO, by testing the location ACOO and AOO! for 40
and BF respectively. If these are present, then interpretation is
passed to the A00O0 ROM. ‘

The COS commands are independent of the BASIC interpreter, and
have their own interpreter at F8F0, accessed automatically by the
leading asterisk (*) of all COS commands. The COS command interpreter
is indirected by (OSCLI), which, since it is in RAM, allows user
intervention, and so the possibility of adding extra words without the
addition of aROM. An illustrationof this is given later by the HEX DUMP
program.

Assume the following string is being interpreted: .

[FIRIIINIT [ALTPIRITIN[T]B] OD]

and that we are in the direct mode, so that this has been typed into the
machine from the keyboard. The string is held in the direct mode input
buffer at 100 onward. The keying of the carriage return (<CR>) puts an
0D at the end of the string as shown, and passes control over to the
interpreter.

The interpreter uses a vector at 5,6 to point to the
location of the string under scrutiny and so this vector is set to 100
fromthe direct mode, and aword match is sought. The interpreter works
its way along the word by incrementing Y , so that (5),Y points to the
character within the word being matched. Once the machine has resolved
the entire command (PRINT in the case above) the vector (5) is
consolidated by adding the Y register to it. ThenY is set to zero, so
that in our case (5),Y is pointing at A in the PRINT A command. The
interpreter goes on to find out what needs printing, but before
execution checks that there is no rubbish behind the letter A, then
executes the appropriate routines. Having executed the PRINT A, the
vector at (5),Y is now pointing at the statement separator
(semicolon), and the machine skips past this to execute the next
command. '

By this means the (5),Y pointer can range throughout the whole
of the memory area. All the machine's BASIC interpreters use this
vector, and before the value of Y has been spoiled by execution calls,
its value is stored in 7?3 .

groenny pron

100-13F
140-17F
180-1FF
200,201
202,203
204,205
206,207
208,209
20A, 208
20C, 20D
20E, 26F
210,21
212,213
214,215
216,217
218,219

LSB

CHAPTER 3

RAM USED BY THE OPERATING SYSTEM

FUNCTION

Error number in BASIC

Line number in BASIC, 0 means Direct Mode
(as MSB,LSB in Binary, not BCD)

BASIC text pointer offset

Workspace Stack pointer ,
BASIC text pointer:(5),3 points at character
COUNT value

Random Number seed

TOP : points at top of BASIC text area
Hexadecimal printer flag (negative=zhex)
Pointer to BASIC error handler

BASIC text area MSB (page), normally #29
DO/UNTIL stack pointer

GOSUB/RETURN stack pointer

FOR/NEXT stack pointer

Integer Wdrkspace stack

DIM (free space) pointer i
DATA pointer for DISATCM

Arithmetic Workspace

Floating Point Workspace (free if FP unused)
FREE

COS workspace ;

Title string of file to !oad from tape
*FLOAD flag. Set if bit 7=1

Cursor position pointer (start of line)
Horizontal cursor position 0-iF

Cursor Mask, usually #82

Page mode flag:neg.=OFF,else No. lines left
Lock key flag. O=inactive, #60=1lock on
noramily 0. If not, then *NOMON engaged
Character NOT sent thru VIA to printer

"Direct Mode input buffer

BASIC input buffer and String operation area
Microprocessor Stack

NMI VEC -

BRK VEC CoD8

IRQVEC ~ A000 , just RTI
COMVEC F8EF

WRCVEC FE52

RDCVEC FE94

LODVEC F96E

SAVVEC FAE 5

RDRVEC C2AC , just BRK
STRVEC C2AC , just BRK
BGTVEC FBEE

BPTVEC FC7C

FNDVEC FC38

21A,21B
—21C-23F
240-24A
24B-255
—256-260
261-268
26C-276
_277-281
282-28C
28D-297
298-2A2
~2A3-2AD
2AE-2B8
289-2C3
—~2C4-2CE
| 2CF-2DC
2DD- 2EA
_2EB-305
306-320
321-338
33C-356
—357-371
372-38C
38D-3C0
—~3Cl1-3C4
3C5-3C9
3CA-3FC
_3ED
" 3FE-3FF

LSBy

MSB4
LSBW

MSB~
LS
MS
LSB
MSB
LS
MSB
LSB]

LSB
MSB]

__2800- 2887

-8-

SHTVEC C278 , RTS(unless DOS present)

FREE

Pointer to variable stack,FOR/NEXT, l=zA,2=B,etc.

FOR/NEXT step size stack

FOR/NEXT terminal value stack

FOR/NEXT return address stack

.DO/UNTIL return address stack

GOSUB/RETURN return address stack

Array pointer stack : 2EB,306= @@

2EC, 307=AA etc.

Simple Integer Variable stack
321,33C,:357,372 @
322,33D,358,373 A

etc.

Label address stack 38D,38E=[@);38F,390:[4] etc

Last plotted point (for line drawing)

Used by FPUT and FGET :

FREE unless DOS used

Used by colour point plot

Point plot vector

wo

Floating point variables %d to %Z .Each is 3
bytes wide, so 135 bytes used.

-] | .] 2] [[] |] [[] sy oo [[] prEmn p

+ 9
THE SIMPLE INTEGER VARIABLE STACK

Variable LSB MSB
Q 321 33C 357 372
A e 33D 358 373
B 323 33E 359 374
c 324 33F 354 375
D 325 146 358 376
E 326 341 35¢C 377
F 327 342 35D 378
G 328 343 35E 379
H 329 344 35F 37A
I 32A 345 360 378
3 . 328 346 361 37¢C
K 32C 347 162 37D
L 32D 348 3163 37E
M 32E 349 364 IFE
N 32F 14A 365 380
o 330 348 166 381
3 331 34C 367 382
Q 332 34D 3638 383
R 133 34E 369 384
5 334 34F 36A 385
T 335 150 168 386
u 336 351 36C 387
" 337 352 36D 338
W 3138 353 36E 389
X 339 354 36F 38A
¥ G 334 355 370 388

Z ' 338 356 FT1 338C

-10-

" THE ARRAY POINTER STACK

ARRAY POINTER
@@
AA
BB
CcC
DD
EE
FF
GG
HH
11
33
KK
LL
MV
NN

LSB
2EB
2EC
2ED
2EE

2EF

2FQ
2F1
2F2
2F3
2F 4
2F5
2F6
2F7
2F8
¢F9
2FA
2FB

ZFC

-2FD

2FE
2FF
300
301
302
303
304
305

306
307
308
309
30A
308
30C
20D
30E
30F
310
3l
312
i3
314
315
316
317
318
319
31A
3iB
31C

3D

FIE
31F
320

=il =

THE LABEL ADDRESS STACK

Address
MSB

LSB

Label

38E
390
392
394
396
398
3%A
39C
39E
3A0
3A2
3A4
3A6
3A8
3AA
A
3AE
380
3B2
3B4
3Bé6
B8
3BA
3BC
3BE
3C0

38D
38F
391

393
395
397
399
398
39D
39F
3Al

3A3
3A5
3A7
3A9
3AB
3AD
3AF
3Bl

383

385
387
3B9
3BB
3BD
3BF

REEEUEEENEEEREEEEAEEEE BEA

CHAPTER 4
ADDRESSES OF ROUTINES

C000 to C22B : All this is Data for the Interpreter. The interpreter
fooks in this area for amatch for the first letter of the word
it is looking at. It then jumps in the table toc an area
containing all words beginning with that first letter, and
looks at the second letter, It thus performs a Tree Search of
the BASIC words stored in this area.

C22C to C278 : A Subroutine, the Function Interpreter. This area
~evaluates the Value of any arbitrarily complex function
pointed to by (5),Y ,finds its value, then stores the results
on the workspace stack (SEE C3C8).

C279 to C2AC : Looks up the "meaning" of commands. 1f there is nomatch
intheTree Table at C000 it hands over to those kept at F000, if
not there then D000, if not there then A00O, and if not there
thenerror. The tree search is very quick and it seems that this
is theoriginal ACORN Interpreter. The later additions at F000
and elsewhere are total linear searches and slower.

C2AD : Executes the command NEW .This is available to you, but
exits back to direct mode. En_ter routine at C2B2.

C2B2 to C3lA : Execution of the <BREAK> key comes to here from about
FF94. 1t puts ODFF into 2900,2%01,sets @=8, then hands over to
the CDOF Keyboard Input routines. This routine is entered at
C2CF after a command execution, and at the end of a BASIC
program.It carries on thus:

C2D5-set vector at (5) to =100

C2DC-set line number =0

C2E0-set BRK vector to CSDS8

C2EA-set error pointer to CS9E7

C2F2-set stack pointer to FF

C2F5-zero the temporary X and Y stores

C2FB-set nesting level of all GOSUB, FOR, DO loops to 0.
C30l-set all labels to 0 ‘

C309-asks"is this a line number®;C313-YES;C316-NO .
This area can be entered anywhere if there is a command in the
Input buffer.

- C31B to C333 : Executes the command THEN.

C325 to C333 : Executes the command LET.
C334 to C33E : Executes the command PRINT.

C33F to C3B1 : PRINT in Hexadecimal.Entry at C349 prints the workspace
stack in HEX. See example, CHAPTER 6.

C3B2 to C3C7 : Executes the command LINK.

C3C8 to C3E4 : A Subroutine to evaluate an arbitrarily complex
function pointed at by (5),Y and store the computed value on
the workspace stack. On return the current value of the
workspace stack pointer is where the answer is stored. The
value is also copied to 52,53, 54 55. On return the (5),Y
pointer has been consoiidated, i.e. (5),0 points at the Iast
character in the string interpreted.

-13-

L]

C3E5 to C3ED : Deal with assignments such as "X=..." .

C3EE to C405 : Deal with the command ! (quad-POKE).

_C406 to C40D : Deal with the command ? (POKE).

Cu4OF to C423 : Executes the cassette operating commands starting with

#, The routine strips off the * and copies the remainder of the
(5),Ystring, up to a<CR>, into thedirect mode input buffer at
100. A subroutine is then called which passes interpretation
over to OOS by ISR FFF7 (indirected by (OSCLI)).

C424 toC433 : Checks tosee if Floating PointROMis in. The lowest two

bytes of the FP ROM are a signature (AA 55), and this routine
tests for these values at D000 and D001, then returns with the
carry clear if theROM is not there. The routine is called from
C550, where the machine is deciding whether to pass astring it
can't understand to the interpreter contained in the floating
point ROM, or to give up and signal an error,

C434 to C464 : The Interpreter "Pre-Test"” subroutinewhose effect is to

—
»

take the character pointed to by 5,Y (where Y=?3) and if this
character is an alphabetic it converts it to the number 1-26,
thenplaces it at 16,X (whereX=?4), then ?4 is incremented. If
the next character is non-alphabetic the carry is cleared
before return (eg the conmand P.), but if the next character is
alphabetic (eg the command LINK) then the carry flag is set
before return. This routine therefore enables the machine to
rapidly execute abbreviated commands, since it need not read
the entire command.

—Cié5 to C4DD : Avaluable Subroutine toread adecimal string. It readsa

CUES

string pointed to by (5),Y (where Y=?3) as ASCII decimal
characters, and converts the decimal numeric value toabinary
value, then stores it in the 16,X workspace stack (where
X=?4). 7?4 is incrememted so the workspace stack can continue.
1f the first non-space character is not a number, then BRK is
executed. Spoils A,X, and Y registers.

to C50B : A Subroutine used as the interpreters post-test. It

checks that (5),Y (where Y=?3) is pointing at a carriage
return or a semi-colon, or spaces leading thereto. [f not,
then executes BRK.

C4F6- consolidates (5) by (5)=(5)+Y and Y=1 .

CS04-checks to see if the ESCkey is depressed. If not thenRTS,
otherwise it jumps to direct mode and executes the escape
code.

C50C to C546 : A Subroutine which copies a new line number to 1,2 and

checks if the line is labelled. [{f there is a label this routine
passes the current text-positionpointer at (5),Y to the label
store (LSB 38D,X MSB 38E,X).

CS4A to C565 1 Executionof astatement pointed atby 5,Y. [t also checks

e

for the Floating Point ROM, and if it is there this routine
jumps indirectly to (D002). If not then it jumps to default
handling. C55B is the best place to return to BASIC after am/c
routine, whether in direct or program mode.

A e

-

-1l

C566 toC574 : Executes the IF command. C566 callsC70C, whichis a truth
test that puts a zero on the workspace stack (at 16,X where
X=74) if false.

C575 to C588 : Executes the REM command by incrementing (5),Y until a
<CR> is encountered.

C589 to C607 : A Subroutine which prints the lowest level of the
workspace stack (ie 16,25,34,43) as asigned decimal number in
field size @ . A,X,Y are spoiled. ’

C608 to C62D : Data tables for_the above routine.

C62E to C660 : A Subroutine which uses the vector at (58) to search
through a BASIC program looking for a line number match, or for
a -line number greater then that recently inputted. The
inputted line number is assumed to be on the 16,X workspace
stack one leve!l down from the workspacestack pointer(?4). The
routine returns with (58),Y pointing at the character
immediately after the matching line number, and the carry is
clear. If thecarry is set, thenno line number match was found.

Cé61 to C688 : A Subroutine called by the C80B multiply routine.

C689 to C6D9 : A Subroutine as Cé66l!.

C70C to C713 : A Subroutine which is the truth test used by the IF and
UNTIL commands. It evaluates anarbitrarily complex statement
or equation [pointed at by (5),(?3)] and places zero on the
workspace stack at 16,X if false.

C714 to C721 : The logical AND truth test (you use C70C).

C722 to C72B : The logical OR truth test (you use C70C).

C731 to C79C : String comparison test use by the above truth test

C79D toC7B6 : deals with adding together two adjacent 4-byte numbers on
the workspace stack, viz.: '

14 14 15
23 = 23 + 24
32 32 33

41 ,X &1 ,X 42 ,X

C7B87 to C7D2

As above, but subtraction.

C7D3 to C7ED : As above, buf bitwise logical OR.

C7EF to C80A : As above, but EOR.

C80B to C87A : Deals with multiplication.

C87B to C89B : Similar to C79D, but bitwise AND based on 16,X.

C8BC toC8DB : As for C3C8, but increments w/s pointer, and does not copy
the result to 52,53,etc.

— -15-
28BC toC8DB : ASubroutine which deals with the minus sign. Entering at
C8C4 negates the current slot on the workspace stack cf:

15 15
. 24 =0- 24
— 33 33

42 ,X 42,X

_C8DC to C8F7 : ASubroutine todeal withvariableassignments. Entering
at C8E3 will copy any simple variable pointed at by Y (Y=1 is
A,Y=2 is Betc.) to thecurrent slot on the workspace stack (as
given by ?4).5ee eg program at back. This is the opposite of
n - CA2F.

C8F8 to C901 : Deals.with numeric assign'ments.'

2902 toC909 : Executes the ABS function. This can be used by pointing at
the item you want ABSed with 5,Y. The result is placed on the
- workspace stack.

“C90A to C943 : Deals with the # sign (HEX number sign).

TC944 to CY94B : Deals with ((leftbracket).

' C94C to C95E : Deals with ? as a PEEK function.

295F to C972 : Deals with ! as a quad-PEEK function.

€973 to C985 : ASubroutine that reads TOP value at vector (D,E) onto the
current workspace stack, and increments the workspace stack
pointer.

—97A to C985 : A Subroutine which reads the current COUNT value (?7) to
the current slot of the workspace stack.

~-986 to C9BC : A Subroutine to execute RND., It generates a new random
number at 8 to C, copies it to the current slot of the
workspace stack, and increments the workspace stack pointer
(?4), which you MUST reset.This can be used by you to generate
ra}mdom numbers in a machine code program (see examp le ,CHAPTER
6 L]

—9BD to C9Dl : Executes the LEN function.

C9D2 to C9D7 : Deals with the CH operator.

~9D8 to C9E6 : BRK handler. When the 6502 executes a BRK instructionit

is directed here through the vector in 202,203, normally set
by the operating system immediately before executing a Direct
Mode command. Its effect is to point the BASIC interpreter
text pointer at the vector 10,11, normally C9E7. Exits to
direct mode.

16~

C9E7 toCA23 : BASICerror handler. This is theBASICstatement executed
whenever a BRK command is executed, normally meaning an error
of some type. It says:

; @ =1;P.%657 "' "ERROR "?0;
@ =8;IF ?Ig?2 P." LINE"! 1 & ®#FFFF;P.';E.
It uses 7?0 as the error number and ! 1 & #FFFF as the line
number. I1f the line number is zero this is inferred as adirect
mode error, and no line number displayed. Usable by pointing
5,Y at C9E7, then IMP C55B.

CA24 to CA2B : Routine which calls the floating pointROMinstallation
check at C424 and either Breaks if not installed, or jumps
indirect (D00O4) if ROM is there.

CA2F to CA4B : A Subroutine, which copies the last value on the
workspace stack to the integer variable pointed at by the Y
register (Y=1 for A,Y=2 for B, etc.). The workspace stack
pointer (?4) is decremented TWICE. This is the opposite of
C&ncC.

CA4C to CA4E : Subroutine, which increments the value of COUNT
(location 7) and then prints the contents of the accumulator
as an ASCIlI character.

CA51 to CACC : Execute LIST. The value of the X register must be 0 on
entry, and the routine exits to direct mode.

CACD to CB56 : Execute NEXT. CADO checks the value of the FOR/NEXT stack
pointer(?15) and causes BRK if 0, since this must mean no
FOR/NEXT has been set.

CAE5- adds the STEP size to the variable.
CBl6- checks if the control variable value has reached the

final value.
CB45- moves the text pointer back to the statement after the

corresponding FOR statement.

CB57 to CB80 : Execute FOR. CB5F sets the control variable equal to its
first value.
CB65- checks that the FOR/NEXT stack pointer has not exceeded
the allowable range.
CB6C- saves a default STEP value of 1 .

CB81 to CBAl : Execute TO. CB89 saves the terminal value of the FOR
control variable.

CBA2 to CBDl : Execute STEP. CBAA saves the STEP size.
CBC3- saves the FOR/NEXT return address, and increments the
FOR/NEXT stack pointer at 15.

CBD2 to CBEB : Execute "GOSUB". CBD8 tests the GOSUB stack pointer value
(14) and yields an error if too many. ,
CBDE- saves the RETURN address, and increments the GOSUB stack

pointer.

CBEC to CCO4 : Executes RETURN. CBEF tests the GOSUB stack pointer (14),
and if 0 gives the RETURN WITHOUT GOSUB error.
CBF5- pulls the return address from the data stack into the

text pointer at 3.

p—

CCO05 to CCIC : Executes GOTO.

s We

CCIF to CC80 : Subroutine, called by GOTO and GOSUB. It searches for an

inputted line number or matching label., A successful search
results in the line number being copied to locationl,2. If the
label address is already known this is copied to 58,59.
Otherwise the label is searched for and then stored in the
label store as well as being copied to 58,59.

~C81 to CCDl : Execute INPUT. CCSE is the entry point for a numeric

._CCD2 to CCEF : Execute UNTIL. CCD2 calls the routine at C70C (the truth °

variable INPUT, and CCBé for a string variable. Both entries
call the BASIC input routine at CD09 (q.v.); the inputted data
is then copied or read from the string input buffer at 140
onwards (see e.g. prog. at back).

tester).

CCD5- checks for a zero value of the DO/UNTIL stack pointer at
13 .If zero, this is an UNTIL with no DO error.

CCE5- pulls the corresponding return address from data.

CCFO0O to CD08 : Execute DO. CCF0 checks the value of the DO/UNTIL stack

pointer at 13 for range, and causes an error if out of range
(too many DO/UNTIL loops).
CCFA- saves the DO/UNTIL return address.

—ZDO9 to CD58 : A very useful Subroutine, to execute inputs. Entry at

CDQ9 prints a '?' on the screen and thenwaits for keypresses.
Entries are stored in the string input buffer at 146 onwards,
and full editing is allowed. The routine returns when <CR> key
is pressed, with theY register pointing at the last character
inputted. Entry at CDOF prints the contents of the accumulator
as an ASCII character (normally the > prompt sign), and then
stores keypresses in the Direct Mode input buffer at 100
onwards. The value of COUNT (?7) is set to O on return (seee.g.
program at back).

<D98 to CDBB : Execute END. This effectively sets TOP (?0D) and jumps to

.DBC to

direct mode.

CD9B- set TOP=712 (start of text area).

CDA5- using TOP as a vector ,find a carriage return followed by
a negative number, indicating end of program.

CDC8 : A Subroutine called by END which executes:
TOP=TOP+Y register;Y register=1l .

"IDC9 to CE82 : Routine to enter a BASIC program line into the text area.

—

On entry 16 and 25 contain the line number being entered.
CE3E- A RAM test to see if there is enough to enter it.

.E83 to CE92 : Continuation of the RUN command (see Fl4l). It sets the

text pointer at 5 equal to start of text (normally 2900) and
then jumps to the interpreter at C55B .

"E93 to CEAO : A Subroutine called by the m?" command at C406.

T'EAL to

CEAD : A Subroutine which executes:
(58)=(58)+Y register; Y register=1

L

~18-

CEBIl to CEB5 : A Subroutine that checks for a dollar sign or quotes at
the location pointed to by 5,(?3). If true, it returns with
5,(?3) pointed to the character after, if false, BRK.

CEBF to CEEC : A Subroutine. It copies a string in quotes pointed at by
(5),Y into the string input buffer at 140 onwards. The
quotation signs are removed. Enter at CEC2.

CEED to CEF9 : Execute LOAD command. CEF4 calls the 'Load a File'
routine at FFEO. A!ll this is well documented in the ATOM
manual. :

CEFA to CF09 : ASubroutine called by LOAD and SAVE. It reads the program
titleintothestring inputbuffer at 140, sets the vector (54)
equal to the start of the BASIC text area (normally 2900), and
then returns.

CFOA to CF27 : Execute SAVE command.
CFOA- calls above subroutine to set (54)=start of text.
CFOD- sets (58)=start of text.
CFll- sets (5A)=TOP
CF19- sets (56)=RUN address of C2B2.
CF22- calls 'Save a File' routine at FFDD.

CF28 to CF5A : Various uninteresting subroutines used by GET and PUT-
see routines that follow.

CF53B to CF65 : A Subroutine to execute BGET. It reads a value from
tape/disc to the workspace stack LSB and sets the other bytes
to zero.

CF66 to CF7A : A Subroutine to execute the GET command. 1t reads four
bytes from tape/disc to the workspace stack.

CF8F to CF94 : Execute BPUT command.

CF95 to CFB3 : A Subroutine to execute PUT.

CFA6 to CFB3 : A Subroutine to execute FIN.

CFA7 to CFB3 : A Subroutine to execute FOUT.
CFC5 to CFE2 : Execute SPUT command.

CFE3 to CFFF : execute SGET command.

The above GET and PUT routines use 5,Y to point at the data after the
command. ,

B -19-

FO00 ROUTINES
" F000 to F02D : Command word table and action addresses. Includes
PLOT,NDVE,DRAW,CLEAR,DIM,OLD,WAIT, and [

- FO2E to FO4A : An array pre-test, looks for two consecutive characters
being the same, thus identifying an array.

~FO4B to FO082 : Interpreter for the above command words. Jumps to the
‘ appropriate action addresses.

~F03B8 to FOAD : A Subroutine called by FO2E to pull the array start
address from the table of array addresses (as LSB=2EB,Y and
MSB=306,Y) and places it on the workspace stack. '

FOAE to F140 : Executes DIM command as follows :
FOAE- Causes error 216 if in direct mode.
FOB9- Simple string dimension:set simple variable values
(lower 2 bytes) to next free RAM space, and points DIM vector
at(23)to the next available space.
FOD7- set up array dimensions. Sets the appropriate array
i variable pointer (see F08B), and points DIM vector to next
available space.
F119- check that DIM vector has not exeeded avialable RAM, and
— cause error 30 if it has.
Fl3l- take action on additional items separated by commas in
the same DIM statement. _

TFl4l to F14B : Executes the RUN command. Sets DIMvector at (23) equal to
TOP, then jumps to CE83. This is the correct GO address for
BASIC programs that use a DIM statement. CE86 may also be used
B if there are no DIM commands.

F14C to F154 : Executes the WAIT command (uses FEé66).

F155 to F290 : Assembler data and look-up tables.

_F29! to F29B : ASubroutine to fetch the next non-space character in the
BASIC statement being interpreted. It uses 5,(?3) as a
pointer, and returns with ?3 pointing at the first non-space

character.

F2Al to F375 : Executes the "[" command (start assembler).
F2A3- deals with "]"
—_ F32E- deal with assembler labels,
"F360- deal with assembler REMs (/).
F36B- deal with statement separator (;).

"~ F376 toF37D : ASubroutine toprint the contents of the accumulator as
two hex characters followed by a space. Used by the assembler

listing display.

F37E to F38D : Byte-printing routine called by F376 above.

o]

e

)

h oo TN Con]

-20-

F38E to F530 : Various routines used by the assembler.
F399- separate labels, separaters(;), and REMs (/).
F3F2- separate 1mmed1ate(@),1nd1rect ({)), and accumulator
mnemonics.
F454- act on immediate mode (@).
F462- act on indirect mode (()).
F49B- act on accumulator commands (e.g. ROL A).
F511- print "Out of Range".
F514- the string "Out of Range"

F531 to F541 : Carries out the OLD command.Exits to END at CD9B.

F542 to Fé4l : Carries out MOVE,DRAW,and PLOT commands.
F542- entry point for M‘DVE.
F546- entry point for DRAW.
F54E- entry point for PLOT.

F644 to F67A : Subroutines used by MOVE,DRAW, and PLOT.
F668- decrement the vector (35A),X .
F671- increment the vector (5A),X .
F678- point plot subroutine (JWP(3FE)). 3FE/3FF depends on
the mode set by the CLEAR command (see below).

F67B to F6CE : Carries out the CLEAR command. This sets up the word at
BOOO for the CRT controller, and places the appropriate point
plot routine address in 3FE/3FF.

F6C2 to F6CF : Carries out CLEAR 0

F6CF to F6El : Graphics mode control data, including appropriate
clear mode and point piot routine addresses, and CRT
controller words for B000 (port control from PIA).

F6E2 to F7C8 : Point PLOT subroutines use by MOVE,DRAW,PLOT.
: [t requires the XCo-ordinate in 5A,5B ; the Y Co-ordinate in
5C,5D ; 5E=0 clears point, 5E=1 sets the point and 5E=2 inverts
the point. Entry points are:

MODE ADDRESS
0 F6E2
| F73B
2 F754
3 F76D
4 F7AA

F7C9 to F7D0 : Data used by point plot routines at F6E2 et.al.

F7Dl to F7EB : A Subroutine that is very useful for printing from your
own machine code program. When this routine is called, all
bytes after the call are considered to be ASCII code, which is

"~ outputted to the screen. The routine will terminate back to
your m/c programwhen it encounters a negative number (NOP is a
good one).See example of use in CHAPTER 6.

B -21-

F7EC to F817 : Subroutines to print the hex value of
— words (& bytes), vectors (2 bytes) and single bytes.
On return X is spoiled, but A and Y preserved.
F7EE-print in hex a word in order X+1,X,X+3,X+2.
F7Fl-print in hex a vector (X+1,X).

F7FA-print byte in accumulator plus a space.
F802-print in hex the byte in the accumulator.

“F818 to F84E : A Subroutine (use by *LOAD,*SAVE etc.), which copies a
string enclosed in quotes in the 100 input buffer to the string
area starting at 140. Y should point to the beginning of the

- input string. X,Y, and the accumlulator are spoiled.

F86C to F874 : Print "NAME" then BRK.

F875 to F87D : ASubroutine to fetch the next non-space character from
the direct mode input buffer at 100,Y . Onreturn, Y points to
_ the character fetched.
F87E to F892 : A Subroutine which converts the value in the
accumulator froma valid ASCII hexadecimal character to its
- hexadecimal value. If the contents of the accumulator was not
a valid ASCII hex character tne routine returns with the
accumulator unchanged, and the carry flag set. Otherwise, the
—_— accumulator contains the true hex value and the carry flag is
clear.

_F893 to F8BD : A Subroutine which reads the ASCII hexadecimal!l value in
the direct mode input buffer at 100,Y as a vector (two bytes or
4 characters) to the location pomted to by X on entry to the
routine. e.g. '

e Y=zposition of the lst character in the buffer,lets
say it points at the A of Al47.
X= #80

s After JSR F893, then 80,81=Al47. If the first
character in the buffer was invalid, then the zero
flag is set on return, ‘

“FSBE to F8ED : Table of *COS reserved words and their action
addresses.These are: CAT,LOAD,SAVE,RUN,MON,NOMON,FLOAD,

and DOS.

——

F8EF to F925 : *QOS interpreter subroutine called by OSCLI. It looks

for a match between a word in the direct mode input buffer at

s 100,Y and the reserved words starting at F&BE. It jumps to
the correct action address if a match is found.

_F926 to F92E Default routine for unknown *CQOS command, which prints
OM" and then ERROR 48.

 F955 to F96D : Executes the *FLOAD and *LOAD commands .
= F955=-*FLOAD , and F958=*LOAD. The routine exits via (20C) ,
the LODVEC, which is normally set to F96E.

-37 .

F96E to F9A1l : ASubroutinewhich lcadsafile. This isnormally called
by JSR FFEO (OSLOAD-pointed to by [20C]). Xmust point at
zero page vectors as follows: O,X 1,X=file name string ; 2,X
3,X=first data to be put here 3 lf bxt 7o0f 4,Xis 0 the flle s
own start address is used.

F99A- print a series of spaces by INY until Y=0F, soup to |5 spaces can
be printed (note-it's easier to use CA46 and monitor ?7).

F9A2 to FA07 : A Subroutine called by the F96E routine.

FAO8 to FAl18 : ASubroutine which increments a vector {2 bytes) in page
zero pointed at by X (X,X+1),and each time does a CMP with the
vector pointed at by X+2, X+3. It returns with the zero flag set
if the vectors are equal otherwise clear. '

FAl9 to FAIF : Executes the *MON and *NOMON commands.
FA19=*NOMON, and FAlA=*MON

FA20 to FA29 : Executes the *RUN command.
FA2A to FA64 : Executes the *CAT command.

FA65 to FA6A : ASubroutine that calls the routine at F893. If the data
read by F893 was invalid then this routine prints "MON?"
followed by a break.

FA76 to FA85 : A Subroutine to check that there is no rubbish after a

. —valid * command. Only a carriage return or spaces leading to a
carriage return are allowed. Otherwise it prints "MON?"
followed by a break.

FA86 to FABA : Saves an unnamed file, Called by FAES.
FABB to FAE4 : Executes the *SAVE command. This routine calls the

operating systemsave-fileroutine pointed at by (ZOE) which
normally contains FAES.

FAE5 to FB3A : Save file routine normally called by OSSAVE routines.
E.nter with X ponntxng at a table of addresses in page zero as

follows:
0,X 1,x file name string
2,X 3,X reload address
4,X 5,X execution address
6,X 7,X first byte to be saved
8§,X 9,X last byte+]l to be saved

FB3B tc FB89 : Routines called by the save- ~-file routine which commit
the file to tape. Useful parts are :
FB7D- wait 2 seconds.
FB8l- wait 0.5 seconds.
FB83- wait X/60 seconds.
FB8C- wait 0.]! seconds.
X=0 on return from these routines.

-23-

FBEE to FC2A : A Subroutine to get a byte from tape. This routine is

indirected by (214), normally called by JSROSBGET (FFD4), and
is designed to act at 300 baud. The routine reads individual
bytes from the tape and is called by the LOAD routines, and by

BGET, SGET, etc.. The byte fetched is passed back in the

accumulator, the X and Y registers are preserved. The
accumulator value is also added to the check sum kept in
location hex DC. :

FC38 to FC7B : A Subroutine used by COS commands to write PLAY,RECORD,

FC7C to

or REWIND TAPE, then wait for a key to be pressed before
returning. Entry at FC38 with C=1 gives "RECORD TAPE", while
C=0 gives "PLAY TAPE".Entry at FC40 gives "REWIND TAPE".
FC4F- message PLAY TAPE. '

FC58- message RECORD TAPE.

"FC63- message REWIND TAPE.

FCé6D- message TAPE.
FC76- wait for keypress.

FCBC : A Subroutine to put a byte to tape. This routine is
indirected via (216), normally called by JSR OSBPUT (FFDI!) ,
and operates at 300 baud.The routine is called by the SAVE and
BPUT commands, and passes the value of the accumulator to
tape. The X and Y registers are preserved. The accumulator is
also added to the checksum total, kept in hex DC.

FC88- synchronise to 2.4 KHz edge.

FC92- output a logical I.

FC9C- output a logical 0.

FCD& to FCE9 : ASubroutine used by OSBPUT to synchronise the bits being

output to 2.4 KHz. reference oscillator. Entry at FCD8 waits
for the first occurenceof ahigh-to-lowtransitiononbit 7 of
port C of the PIA (the 2.4 KHz reference). Entry at FCDA with
the X register set to a number 0 to 7F counts that number of 2.4%
KHz. transitions before returning. This can be used for timing

_since X=1 gives c. 400 microseconds, X=2 ¢. 800 usecs. , etc..

FCEA to FES51 : ACollection of subroutines associated with the print
. channnel OSWRCH, including execution of the control codes 0

thru IF, Useful ones are given below.

FDOB- <CTRL> F (screen off).

FDL1- <CTRL> U (screen on).

FDIA- <CTRL> G (bell).

FDIC- short bell.

FD40- move cursor to start of line without deletion.
FD44- invert character at current cursor position.

FD50- delete a character.

FD5C- backspace.

FD62- linefeed.

FD65- Invert character under the cursor. 1f the screen has
previously been turned off(i.e. ?2E0< 0) then a CLEAR SCREEN is
executed.

FD69- <CTRL> L (Clear ,Home Up Left)

FD7D- <CTRL> 4 (Home Up Left)

FD87- cursor up.

FD8D- <CTRL> N (Page Mode On).

FD92- <CTRL> O (Page Mode Off).

porory e e e [i e - oo ey g g

P

-24-

FDEC~ Scroll-Screen Check, looks to see if the next character would
cause a scroll, checks the page mode counter (?E6), and
executes a,scroll or waits for a keypress.

FEO8- Scroll the Screen. Entry at FEOA with Y=40 will scroll
all but the top line of the screen. Y=60 leaves'the top two
lines alone, etc..

FE22- delete al!l current line

FE24- blank Y+1 characters in current line.

FE26- fill Y+1 characters from current line onward with the
character in the accummulator.

FE35- Check Next Cursor Position, called by Backspace and
Delete to see if the cursor is at the beginning of a llne or Home
position.

FE52 to FE65 : Routine to print a character. This is indirected by .
(208), called by the OSWRCH at FFF4.
FE52- Pass character to VIA printer, and execute.
FE55- Print character on screen or execute any recognisible
control codes. X and Y registers preserved.

FE66 to FE70 : ASubroutine to synchronise toCRTField Flyback, used to
write on the screen thhout generating noise. Can be used as a
timer.

FE66- wait until the start of the next field flyback, even If
already in flyback.

FE6B- return immediately if already in flyback, eise wait
until the next flyback. A,X,Y all preserved.

FE71 to FE93 : The Keyscan Subroutine called by OSRDCH (see below).
Does not examine <CTRL>, <SHIFT>, <RPT>, or <BREAK>. It
———-seturns with the carry flag set if no key was pressed. [f a key
was pressed when this routine was called, the carry flag is
cleared and the Y register holds the key pressed as its ASCII

value minus hex 20.

FE94 to FECA : OSRDCH Subroutine. This routine waits for a key to be
pressed and "then returns with its ASCII value in the
accumulator. Cursor and some other contro!l codes are executed
BEFORE returning.

FECB to FEFA : Data and Look-up tables for executing control codes.

FEFB to FF3E : A Subroutine called by OSWRCH to pass the value of the
accumulator to the printer using the VIA. <CTRL> B and C enable
or disable this routine respectively.

FF10- waits for handshake signal. (SEE Chapter 7).

FF3F to FF99 : RESET - the machine comes here after hitting <BREAK> or at
switch-on, by picking up the reset address at FFFC (common to
all 6502 microprocesssors)

FF3F- initialise page 2 vectors (204 and up).

FF4A- set stack pointer to FF.

FF53- set all array pointers to FFFF.

FF69- print message 'ACORN ATOM'

FF7C- test for RAM at 2900, and set text pointer to default
values if appropriate.

FF9A to FFBI1 : Data used by the RESET routine to initialise page two
vectors.

-25-

_FFB2 to FFBD : IRQ handler. Determines the kind of IRQ (true interupt or
BRK), and executes it,

FFCO to FFCé : Executes BRK.
'FC7 to FFCA : Executes non-maskable interupt (NMI).

~<FCB to FFF9 : Jump tables for major operating system routines.
ADDRESS JUMP(x) CODE NORMAL VALUE
FFCB 021A OSSHUT C278
—_ FFCE 0218 OSFIND FC338
FFD1 0216 OSBPUT FC7C
FFD4. 0214 OSBGET FBEE .
FFD7 0212 RDRVEC C2AC (BRK)
= .FFDA 0210 STRVEC C2CA -"-
FFDD 020E OSSAVE FAES
FFEQ 020C OSLOAD F96E

- FFE3 020A OSRDCH FE9%%
FFE6 OSECHO FE94 THEN FE52
FFE9 OSASC! 0D CAUSES CR,LFE
) FFED OSCRLF CAUSES CR,LF
FFF4 0208 OSWRCH FES52
FFF7 OSCLI F&EF
FFFA NMI FFC7
M FFFC RESET FF3F
FFFE - IRQ/BRK FFB2

CHAPTER 6
WORKING EXAMPLES USING THE ROM ROUTINES

For normal interpreting use there are sixmajor subroutines that are
most useful:

1. C8BC - Read (5),Y to the workspace stack.
2. C231 - Expect and skip past a "," sign.
3. C589 - Print the w/s stack in decimal.

4. C349 - Print the w/s stack in hex.

5. CDO9/F - input with editing to an input buffer.
6. F7D!l - machine code version of PRINT"....."

Further, the best way to end any m/c code routine is JMP #C55B, rather
than using RTS: The examples below use these and other routines to
illustrate how they can be incorporated into you own systems.

1)} To print out messages on the screen

100 DIM P-1

110 M=P _ '

120 [;3ISR #2FD71;] - CALL IN-LINE PRINTER
130 SP="THIS IS A MESSAGE"

140 P=P+LEN P ‘

150 [; NOP TERMINATE PRINTER WITH A NEGATIVE
CHARACTER SUCH AS "NOP"

160 ISR #FFED EXECUTE CR+LF

170 RTS ; 1

180 DO;LINK M; UNTIL O TEST IT QUT

2)To copy a value on the w/s stack to an integer variable.

100 DIM P-1;M=P;[

110 LDY@ CH"N"-40 COPIES W/S STACK VALUE IN
120 LDX@ #FF - #16,25,34,43 TO INTEGER
130 ISR #CA37 ;] VARIABLE N

140 ?16=9 ; LINK M ; PRINT N ; E.
3)To print out the value of one of the integer variables.

100 DIM P-1;M=P;['
110 LDY@ CH"N"-40 FETCH VARIABLE N TO THE

120 LDX@ I
130 ISR #CE83 WORKSPACE STACK.
140 3SR #C589 ;] PRINT W/S STACK AS DECIMAL

150 LET N=20;LINK M;E.

4)For those with DISATOM, using ‘to pass onanumber that fills the
screen. '

10 DIM 331;33(]:-1;331:-1

20 FOR X=0 TO I TWO PASSES
30 P= #3B00 ASSEMBLE AT 3B00

40 [START ASSEMBLING

50 JSR #C8BC READ VALUE AFTER [X]TO %/S. STACK
60 ISR #CHLE4 CHECK FOR RUBBISH,<CR> OR ; OK
70 LDA @ 0 ; STA & RESET W/S STACK POINTER

-continued-

-42-

80 LDA 416 ; LDX @ 0 PUT VALUE INTO ALL SCREEN RAM
90:330

100 STA #8000,X

110 STA #8100,X

120 INX ; BNE 110

130 IMP #C55B ;] '~ BACK TO INTERPRETER

140 NEXT ; END

N.B.-The command must be spaced away fromthe line number if it is
the first command in a line, or the interpreter will mistake it for a
label. All{XJroutines must end in IJMP C55B.

A BASIC program to use the above m/c code is:

10 ! %180= #3B0O
20 F. A=0 TO 255

30 X] A

40 F.I=1 TO 60;WAIT;N.
50 N.A

50 E.

5. To INPUT numbers into your routines.

100 DIM P-1;M=P;[

110 JSR #CDO09 INPUT WITH EDITING TO #140 BUFFER
120 LDY@ 1 ; STY & 120-140,POINT (5),3 AT 2140

130, DEY ; STY 3

140 LDA@ #¥40; STA 5

150 JSR #C8BC READ #140 BUFFER TO W/S STACK
160 JSR #C589 PRINT W/S AS DECIMAL IN FIELD @
170 RTS ;]

180 LINK M ; E. TEST IT

NOTE: This input allows decimal or # prefixed hexadecimal.
Repeated calls to C8BC should be prefixed with LDA@ 0;STA4% to
reset the w/s stack. Unless (5),3 is PUSHed before entry to
this routine, then PULLed at the end, it will exit to direct
mode-.

6. To INPUT Hex numbers intd your routines.

*

100 DIM P-1; M=P ; [

110 LDA@ CH"#" PROMPT WITH CHARACTER ¢

120 JSR #CDOF INPUT WITH EDIT TO #100 BUFFER
130 LDY@ 9 RESET Y

140 LDX@ #80 READ #100 BUFFER AS HEX, STORE TO
150 JSR #F893 '~ VECTOR X POINTS AT- HERE #80

160 JSR #F7F1 PRINT VECTOR X POINTS AT AS HEX
170 RTS ; 1

180 LINK M ; E. "~ TEST IT

NOTE: F893 stores the 100 buffer as a two-byte vector inPage 0,
which is pointed at by X on entry to the routine. The
accumulator is stored in the third byte, so P.! #80 gives a
strange result. -

-43-
7. Hex Printer

100 DIM P-1;M=P;[

110 ISR #CD09 INPUT WITH EDIT TO #140 ? PROMPT
120 LDY@ 0 ;STY 3 SET UP VECTOR (5),Y WHERE

130 INY ; STY 6 ¥=73

140 LDA@ #40 ; STA 5 TO POINT AT #140

150 JSR #C3BC READ (5),Y TO W/S STACK

160 JSR #C349 PRINT W/S STACK IN HEX

170 RTS ; 1]

180 LINK M; E. TEST IT

8. Inverting the screen.

10 DIM JJ2;F.1=0T02;33Z=-1;N.;F.X=0TOl;P= #2800;[
20:130 LDY@ 0; ISR #FEé&6 SYNC TO TV FLYBACK
36:331 LDA #8000,Y

40 EOR@ #80 ; STA #8000,Y DO TOP OF SCREEN
50 INY ; BNE 313!

60 ISR #FEé6B . CHECK STILL IN FLYBACK OR WAIT
70:332 LDA #8100,Y

80 EOR@ #80 ; STA #8100,Y DO LOWER SCREEN

90 INY ; BNE J3J2

100 RTS ;]

110 NEXT X

120 DO; LINK 330 TEST IT

130 F.X=1TO30;WAIT;N.

140 UNTIL 0

9.Unsigned Multiply : Executes (R)=(M)*Acc

10 R= #80 2-BYTE RESULT

20 M= #32 2-BYTE MULTIPLIER

30 DIM JJ2;F.I1=0T02;1J1=-1;N.;F.X=0TOl;P= #2800;{
40:33J0 PHA '

50 LDA@ 0;STA R;STA R+!

60 PLA ; LDX@ 8

70:311 CLC

80 ROL R ; ROL R+1

90 ASL A ; BCC JJ2

100 PHA ; CLC

110 LDAR ; ADC M ; STA R

120 LDA R+1l; ADC M+l ; STA R+l

130 PLA

140:332 DEX ; BNE 331

150 RTS ;]

160 NEXT X

170 | M= #100;A= #B TEST IT

180 LINK J30
190 PRINT &(! R&¢FFFF);E.

-4

10. Unsigned divide : executes (D)={D:/V

10 D= #80 _ z+BYTE DIVIDEND
20 V= #82 i-BYTE DIVISOR
30 R= #83 {-BYTE. REMAINDER
40 DIM JI5;F.1=0TO5;3J1=-1;~.;F.X=0TOLl;P= £2800;[

506:3J0 LDAZ 0; STA R

60 LDX@ #ll; BNE J3J2

70:J11 SEC

80 LDA R ; SBC V ; BPL 133
90:312 CLC ; BCC 1J4
100:333 STA R ; SEC

110:334 ROL D ; RCL D+1

120 DEX ; BEQ 135

130 ROL R ; IMP J11

[140:335 RTS ;]

150 NEXT X

160 ! D= #400 ; ?V=p2l : TEST [T
170 LINK J10O

180 PRINT &(! D&#FFFF) , 7R
190 END

11. Cyclic Redundancy Check (CRC). Has many uses, but for exampla, 1f
the CRC is known for a Program, it shouid give the same result again
after reloading from tape. See Chapter 7 for applicaticn.

100 DIM JJ4;P.521

110 F.1=0TO4;JJI=4FFFF;N.

120 F.1=1TO2;DIMP-1 ;M= r,{

130 ISR #F?Dl] :

140 $P="START ADDR " P=P+LENP
150 NOP

160 LDA@ CH"#" ;ISR gCDIF

170 LDY@ 0;LDX@ #90;JSR #F&953
180 ISR #F7D1;]

190 SP=" END ADDR ";P=P+LENP;[
2060 NOP

210 LDA@ CH"g" ;ISR #CDOF

220 LDY@ O;LDX@ #92;JSR #F893
230 LDY@ 0;STY #AO0;STY :zAl
240:331 ISR 3132

250 LDX@ #90;JSR ¥FAQS

260 BNE 131

270 ISR 3112

280 JSR ¢F7D1;]

290 SP="SIGNATURE 1S ";P=P+LENP;[
300 NOP

310 LDX@ #A0;3ISR #F7F1;1SR 4FFED
320 IJMP #C55B

330:312 LDX@ &;CLC

340 LDA(490),Y

350:333 LSR A; sROL #A0;ROL #Al;RCC 1]4

360 PHA

370 LDA #AO0;EOR@ #2D;>TA #AD
' 380 PLA

390:334 DEX;BNE 1J]3

400 RTS

410];P.S$6;P."M/C CODE IS AT "M;LINK M;E.

e

o=y e

| e e _ e Lt

i}

Bronwy

e

CHAPTER.: 7 o,
TAPE FILES, CRC , AND PRINTER USAGE

THE TAPE:

The ATOM normally stores information to tape at 300 BAUD. Some chips
on the market, such as DISATOM, allow 1200 BAUD, but in all cases the
format of the files are the same. It is useful to study this format in
case there is some corruption of the tape that prevents loading. The
bulk of the information can often be recovered.

There are three types of SAVE command used in the ATOM 1)%¥SAVE named
file 2)SAVE named file 3)¥SAVE unnamed file. The ATOM manual gives
details of how these are used. In the first two cases the hlock header
format is identical. The diagrambelowrepresents the individual bytes
on the tape header for afile called ADVENTURE whichwill begin at 2900,
finish at 3BFF, and have a GO (xRUN) address of 3B50.This file has been
%SAVED as a named file using #SAVE"ADVENTURE"2900 3C00 3B50.

| % | % | . [A | D v E|l N] T U R E |

oD | E3 00 00 FF 1B 50 29 | o0 |

As can be seen, the operfating systemalways places four stars infront
of the file name. if any of these stars are corrupted the file cannot be
loaded. The title of the file can be up to 13 characters (bytes) long,
and so the actual length of the header is variable dependingon the size
of the title. It can be as short as 14 bytes, or as long as 26. The title
is always terminated by 0D (Carriage Return). It is possible to get up
to some real tricks with the title (see PROGRAM PROTECTION).

The next byte is the Header Checksum, to insure that the header itself
has not been corrupted.

The next two bytes are the Block Number, which is givenduring a ®CAT.
The first block ina file is always numbered zero (By the way- you can
abbreviate #CAT as simply ®. and it works fine).

The next byte on the header holds the number of bytes in this block of
information (excluding the header itself and the checksum). Normally
this is FF, since the block contains a full page of memory. However, it
may be less than FF if either l)you save a very short program, or 2) it is
the last block in a file that does not finish at the end of a page.

The next two bytes are the GO address. [f youwere to RUN the program,
the operating system would automatically jump to this address and
begin executing the machine code that should be there. In our example
the address is 3B50.

The final two bytes of the header is the location where this block
will be placed. For BASIC programs this is normally 2900 for the first
block, filling up from there. Of course you may change this in either
the SAVE or LOAD commands. Since our example block is FF bytes long, it
will be loaded into the memory beginning at 2900 and finishing at 29FF.

-46-

The last byte of any block is the CHECKSUM, which includes the header
and the programproper, but not the checksumitself.As the tape is read
in the operating systemexecutes ?DC=7DC + X, where X is the byte being
read. [t then compares ?DC with the checksum at the end, and gives SUM
ERROR 6 if they do not match. Since this is not a true Cyclic Redundancy
Check, it is possible to get no SUM error if there are errors which
exactly cancel out, and the programwill be loaded but will be corrupt.

1f we had saved this fileusing the BASIC command SAVE"ADVENTURE" the
header would be of exactly the same format, but BASIC would fill in the
missing details of the title before actually saving it. Thus it would
find the value of TOP, and would save to tape all memory from (7 #12),
which contains a pointer to the bottomof the program, to TOP. It would
use C2B2 as the GO address, which when executed just places you in
Command Mode. This would be catatrophic for our example, since it
contains machine code AFTER the BASIC part of the program, and is
designed to have this accomplished starting at 3B50. This is quite a
common fault when people copy programs. If there is any machine code
that is not within the BASIC program, or written by it in the course of
execution, then it is not saved, and the copied program will fail.

The Unnamed file is the fastest way to savememory, but does not have
any checksums, and the header is extremely brief. Since the memory 1is
not divided up into blocks, the information is as one continuous
stream, and the header is needed only once. If our example were saved
thus: *SAVE 2900 3C00 , the header would be

ac 00 29 00 _ "and that's all.

If atape is corrupted, it is possible towrite machine code routines
that tring the entire contents of the tape, including the Header and
Checksum, into memory (or use the TAPEXXXX function on DISATOM). It is
stored ina temporary area, such as 8200. The memory at that area is then
inspected, and the block of FF bytes of actual program is then COPYied
to its corect address, say at 2900. Let us assume we captured the
corrupt first block of our example above at 8200. Since the actual
program begins at 8217 we would then type COPY #8216,(#8216+ #FF),

— #2900 . This would put the first block in its rightful place, but has

left behind the tape header and checksum. It does not of course insure
that there is no corruption in the program itself.

CRC FOR THE ATOM

CRC is short for 'Cyclic Redundancy Check'. There is no real need to
understand the mathematical theory of why it works, but it isuseful to
see how its works, and we'll deal with this later. It can be especially
important to ATOM owners, since we have no CRC on the tape input
routine, and it is thus possible to load aprogram inwithout gettingan
error message, but in fact there is an (undetected) error. This is
because the tape header stares a checksum that is just the sum (modulo
256) of all the bytes in that block, and so it is possible to get two (or
more) errors that exactly cancel each other by giving the same sum as
the correct version. There are really two check bytes, one for the tape
header itself, and one for the block of information.

Most machines use a true CRC check, and so the chances of getting an
undetected error are very much smaller (indeed almost 0) than for a

simple sum check. Further, since the check is in

47-

ROM as part of the operating system, it is never lost on power-down. The
best that ATOMusers can do is to 'hide' aCRC in an area of RAM that is
not normally used, but of course this will have to be reloaded each time
the machine is powered up.

What is the advantage of this CRC? Well, just this-most programs are
resident from address #2900 to #3BFF in the expanded ATOM, and once a
program is SAVEd to tape there is no way to load it back and run it
without destroying the original (assuming the program uses the
graphics area). Therefore, if there was an error on the taped version,
you have lost the original by over-writing it. Now if you had , say, a
BBC machine you couid have sent your programto tape then LOAD it back
into a ROM area. Of course the programwill not actually be remembered
by the computer as youcan'twrite to the ROM. However, the point is that
as the program is read from tape it is checked with CRC. I{ we get no
errors we can thus be assured that it was saved correctly. If we do get
an error, we still have the original in RAM, and so can save it again.

Using the CRC program below, it is also possible to do this with the
ATOM, but is slightly more laborious. The procedure is this:

i. Load in the CRC program to an out-of-the-way area.

ii. Write or load a program into the normal text area.
iii. Save your main program to tape.

iv. ¥LOAD your program back, starting at #3200. -
v. Run a CRC on both versions of the program.

1f CRCgives the same result, you can be assured that the programs are
identical, and so you have correctly saved it.

But what if they are not-identical? This is harder to work out. Here
are the possible reasons:

l. The program was correctly saved to tape, but there was an
error in reloading (recorder volume wrong etc.)

2. The program was correctly saved to tape and correctly
loaded back, but there is a fault in RAM (rare).

3. The programwas not correctly saved to tape (usuallya fault
of the tape material or recorder).

You must now go through various diagnostic procedures to find out
just what the problem is. This is the rub. CRC is excellent at telling
you that things are not right, but tells you nothing about where the
error is. You can of course be lucky and have an error where it doesn't
make any difference anyway (such as in a REM statement)! One of the few
things that can be donewithCRC is todivide the programin half and use
CRC on each half, then repeat this until the error is located (abinary
search method).

HOW CRC WORKS

Imagine any area of memory as a long tape, onwhichis printed aseries
of 0'sand l's . These numbers are organised intoblocks of 8. EachQor |
is called a bit, and each block of eight bits is called a byte. Now
imagine that you had this tape in front of you, and that you had a square
of card with a 'window' cut in it , so that you could view 16 bits (2

bytes) at a time:

pes VS

—

-G8~

WI NDOW

START A\ - , END

[$i0110101400100111%10100101%10111000%10101001k11010010%1001001%]

MOVES —>

Start moving the window to the right. Each time a |1 appears off the
left side of the window, ECR the right side 8 bits with $2D. When the
window bumps up -against the end, the number left in it is the
'signature' of that area.of memory. In practice, we will use locations
#A0,Al as the window, and.the accumulatcr is used to put the next 8 bits
of memory into the window. Doing it in this way, the memory itself is not
disturbed. :

[Fro110101400100111¥10100101510111000k10101001§11010010%1001001%!

Accum.
' v

Al A0

—. Locations #90,91 will be used to 'point' at the area of memory under

scrutiny, and 292,93 to hold the address of the END.
LOCATING THE CRC PROGRAM

—

So far as we know, the memory area from #3CA to #3FC is free, and so is
the area from #21C to #23F. It is possible to just squeeze a CRC program

—into these areas by putting the input and control part at #3CA, and the

main subroutine at #21C. We have tested these areas out, and so far
neither the operating system nor application programs have 'stomped’

—on them.

THE SOURCE PROGRAM

This program uses ROM calls that are described in 'Splitting the
ATOM', and sets up the DISATOM command [X] to point at it.

Code

10

DIM JJ4;P.512,521;! #180= #3CA

Remark

Set up labels,screen off,
Point DISATOM

20 F.I=0 TO 4;JJ1=-1;N. Clear labels

30 F.l=1 TO 2;P= #3CA;I[Two passes,put this at
#3CA, START assembler

40 LDA CH"S5";JISR #CDOF Prompt S,in. start adrs

50 LDY@ 0;LDX@ $90;3SR #F893 Store it at #90,91

60 LDA CH"E";JISR uCDOF Prompt E,in. END adrs

70 LDY@ O;LDX@ #92;JISR #F893 Store it at #92,93

80 LDY@ 0;STY #A0;STY Al Wipe the window

90:3J1 JSR 1312 Control area, moves the

100 LDX@ #90;ISR 3FA0S8 window from start to end

110 BNE JJ1

120 JSR J32 We've hit the end,so

130 LDX@ #A0;JSR 2F7F1 Print window

140 IMP #C55B;] Back to BASIC

150 P= #21C; ([Assemble at 321C

160:332 LDX@ 3;CLC Set up for 8 Bits

170 LDA(#90),Y : Get a byte from memory

180:3J3 LSR A;ROL #AO;ROL #Al;BCC JJ4 Push it into the window

190 PHA If a |l fell off, do this:

200 LDA pAO;ECR@ #2D;STA 2AOQ ECR the piece of window

210 PLA '

220:3J4 DEX;BNE 3JJ3 Next bit

230 RTS Back to control area

240];N.;P.S6"ASSEMBLEY COMPLETE";E. Screen on, end assembly.

Since this source code is in BASIC you can SAVE it in the usual way as
"CRCSOURCE" after having RUN it. The machine code is now at #3CA and
#21C, so you have a choice of either Saving #21C to #3FF as one big
block (most of which isn't wanted), or alternatively save the two areas
#21C to #23F and #3CA to #3FF as separate blocks. Only shutting off the
machine will remove the machine code, so you are safe after hitting
<BREAK>.

USING THE PROGRAM

If you have a DISATOM ROM fitted, you need only type after

running the source code. When reloading the m/c code, type
! #180= #3CA :

and this will point DISATOM's at the routine again. For those
without the chip, type LINK #3CA each time you want CRC. The letter §
(meaning Start) should appear on the screen. Type in the four figure HEX
address where you want CRC to begin, then hit <RETURN>. CAUTION!-there
was not enough room for input error checks, so that while you are
allowed to edit your input before hitting <RETURN>, you cannot do so
afterwards. An E (for END) now appears on the screen. Type in the four
figure HEX address of the last byte you want checked, and hit <RETURN>.
Within a few seconds the four figure HEX 'Signature' of that ara of
memory appears on the screen. From your ATOM manual page 93, you will
see that a BASIC program of this type takes many minutes, so we have a
big time saving in addition to everythng else. Try these tests on your
resident ROMs to confirm correct function of the program:

~50-

ROM: Name Start End Signature
Integer BASIC CO000 CFFF D67D
Integer BASIC FO000 FFFF E386
Floating BASIC DO00G DFFF AAA L

1f you have a COPY function such as the one in DISATOM, you can also
use CRC to test RAM. Do this by COPYing one area of RAM to another, then
checking both areas with CRC, which should give the same signature. As
already mentioned, you can dump a program to tape then®LOAD it to #8200
and use the CRC to confirm correct saving. With this confirmation
ability, we have taken to writing down the CRC signature next to the
‘title of the program, and 5AVEd our programs as UNnamed files. This
gives a great reduction in of loading time. Further, if you have a 1200
Baud SAVE/LOAD facility such as in DISATOM, you can use unnamed 1200
files. It is nowpossible to load inabig games program extending from
42800 to #3BFF in just 40 seconds and be assured of a correct load!

THE PRINTER:
The ATOM is initialised such that line feed characters (0A) are not

sent to the parallel printer port used for operation of aCGentronics-
typeprinter. It assumes that the printer has been configured togive an
auto-line feed on receiving a carriage return (oD).

Where this is inconvenient, the ATOM can be made to pass the line feed
character by setting ?FE=FF . The address location FE normally
contains the character which will NOT be sent to the printer, and
setting it to FF will ensure all ASCII codes and characters are

transmitted.

You can check whether the printer is connectéd or not by testingbit?7
of BR800 (handshake signal). You can then avoid locking up the machine,
by executing $2 only after a positive handshake test.

APPENDIX 1
SPECIFICATIONS FOR THE DISATOM SUPER ROM

The DISATOM is contained in a 4K ROM that is fitted in the utility
socket (address AQ00). It contains two major areas: Machine Level with
Memory Handllng, and Additons to BASIC. It is permanently resident,

does not require a LINK command, and does not use any addresses (such as
zero page) you are likely to use. Most words may be abbreviated, and
used in BASIC programs.,

I.Additions to the BASIC Language

AULD XX : where XX is a hex number. This allows recovery of text from any
text space you wish (Celtic OLD !),.
It executes ? #12= XX then OLD (See command PAGE XX).

AUTO X,Y (or A. X,Y) : produces automatic line numbering for writing
programs, beginning at X in steps of Y. Default is 100 10.
RETURN or ESC exits.

COPY X,Y,Z : copies everything fromX to ¥ inclusive to the new location
starting at 2. It takes dccount of direction so the copy won't
overwrite the source. COPY uses the same syntax as PLOT, so

X,Y,2 may be numbers, variables, or arbitrarily complex
functions enclosed in brackets. AVOID addresses that
encompass 0000 or FFFF!

CURSOR X,Y : places the cursor where you wish. X is horizontal, Y is
vertical, and defaults are the current position, but either X
or Y MUST be given. Thus CURSOR X will operate as a screen
TAB(X). 0,0 is top left of screen. Does not operate after a NAK.

DELETE X,Y : deletes all BASIC lines fromX to Y inclusive. If X and Y are
not specified DELETE will not operate.

DUMP : prints out all simple BASIC variables which have currently been
used, and their values.

DIR : directory, to list all the functions of DISATOM.

ERUN : runs a program with error check. If one is found the line is
displayed with the cursor over the probable error.

EXECSX : where X is a string variable, results in the string being
executed as a function. So for example
10 $A="Y=3*2+20/10"
- 20 EXECS$A
results in Y being set equal to 8. Any arbitrarily complex
function or command is allowed in the string.

FIND .A.T.O.M : returns hex address of all locations containing the
ASCII code for ATOM.

FIND[LDA@ 0;STA #80] : returns hex address of all locations
containing machine code A9 00 B85 80.

FIND"PRINT X" : displays all BASIC lines containing the words PRINT X.

-G8~

FIND 20 30 7F : returns hex address of all locations containing machine
code sequence 20 3¢ 7F.

fr—

HEADER X : where X=0 thru 6, causes X lines at the top of the screen to
NOT scroll, so anything there can be used as a header. LOW or
HEADER 0 cancels.

— HELP : makes anyth.mg coming in from tape visible via the cursor. If the
tape is faulty and a SUM ERROR occurs,an automatic *FLOAD is
executed, so you can rewind a bit and continue loading any

—_ number of times. Syntax is:

BELP"filename". NOTE-cannot be used to relocate!

HIGH : causes all cassette tape read or write operations to be performed
at 1200 BAUD, and made visible in the cursor. The cursor symbol
is forbidden in tape filenames. LOW returns rates to normal.

— INKEY X,T : where X is a variable, captures the key pushed in the
variable. T is the time allowed to push the key, in units of 50
msec. (default 0, max 128). If no key was pushed in the time

—_ allowed the variable will contain an FF (255).

[#] : as for HIGH, but for this ONE TIME ONLY. E. g[t] *Loap"TEST"

_ or [ﬁnoan'-umapm- or [}]*save 2900 3coo0.

LOW : causes all casssette tape read or write operations to be performed
at 300 BAUD (normal ATOM speed).This also returns all
M vectors in page 2 to normal values.

NUKE : the really thorough NEW. It punches FF into all ram memory up to
= A000, then BREAKS.

ON ERROR <any valid command or function> : will accomplish the command
or function (this is usually a GOTO) when an error occurs
instead of BREAKING.

QUT X,Y : causes output from the tape socket in RS232 format, with
o handshake. X=BAUD rate , Y=Number of line feeds (default= 1)
per emitted line feed Values of X are:
1=2400 BAUD
—_ 2=1200
4=600
8=300 etc. Default=1200 BAUD
Pin Connections are:
6=serial ouput
2 =earth
4=handshake,which MUST have a 1K reSJ.stor to the printer's 5V
. handshake. If there is no handshake then connect this pin to 5V
via a 1K resistor.

— PAGE XX : where XX are two hex digits. This has the effect of

' ? #12=XX

NEW

This enables you to establish a new text space without fuss.

-69~

PULL N or U or R : ATOM allows only a certain number of nests for
FOR. .NEXT, DO..UNTIL, and GOSUB..RETURN loops. PULL allows
you to leave loops at any time by pulling the NEXT or UNTIL or
RETURN from the memory.

READ-DATA-RESTORE : This combination is used as in standard BASIC
However, this version is much more powerful. RESTORE can be
used to 1)restore to the beginning of data 2)restore toaline
number 3)restore to a label 4)restore to the line number
arrived at by soluton of an equation 5)restore to the next
highest line number if the solution does not point at a line
number . The DATA list can contain str ings (in quotes) ,decimal
and/or hex numerics, variables, or arbitrarily complex
functions. The READ statement will accept ANYTHING that can be
placed on the left of an equals signt! (e.g. READ $A+LEN A). You
can READ into bytes,words,arrays,variables, etc. . BuGa

5 C=15;DIM XX(1),¥Y(15),E5(4)

10 [X] DATA "help",10,32,C+7

15 RESTORE 10 (or RESTORE C*2/3 or RESTORE [X] or RESTORE)
20 READ $S;READ XX(1);READ Y(C);READ Z;END

Results in $S=“help",XK(l)=10,Y(15)=32,Z=22 %

ALWAYS RESTORE before attempting the first READ in the program
(to set the data pointer).

REN X,Y : Renumbers all BASIC lines to start at X and finish at ¥
(Default is 100,10), and then lists results.

TAPE XXXX : where XXXX is a hex address. This captures anything on tape,
including the header, and places it direct into memory
starting at XXXX. Especially useful to recover badly damaged
tapes.

TONE X,S$Y : to create music and sounds. X is the duration in 50 msec

anits (NO defaults, max=127), and $Y the note. There are 6

octaves numbered 0-5, + means sharp, and - means flat. "R"

means rest.The minumum note is "0C" and the max is "5D". For

example TONE 5,"2C+" will give 250msec of the third ocatave C

sharp. Both durations and strings can be read from data

- statements.All tones are automatically outputed through the
tape socket for you to record..

2ERQ : sets all simple BASIC variables to zero.

o 1T

~ II. Machine Level Functions

[Dxxxx :

disassembles starting at location hex xxxx,and waits for the
REPEAT key. Otherwise @:xxx,yyyy doesn't wait. This will

appear on the screen as:
ADDRESS OBJECT CODE SQURCE CODE ASCII Equivilent

The # is not needed, and all xx's need not be used. For
example, [080 disassembles at hex 80. REPEAT key continues,
and ESC gets out of the mode.To Edit, see instructions below.

~ [Bxxxx : Hex dump of memory starting at hex xxxx. This may be used to edit

[Bkxxx :

the memory as given below. Pushing REPEAT will continue the
dump, and ESC exits the mode. [Hxxxx,yyyy will dump without
waiting for the REPEAT key.

ASCII dump of memory starting at hex xxxx. The contents of
memory are displayed on the screen as their ASCII equivilents.
These may also be edited as given below.If no ASCII equivilent
the hex is shown. @txxx,yyyy will dump without waiting.

~ 'EDITING MEMORY USING THE ABOVE FUNCTIONS:

[Dxxxx A

All the above modes will display memory contents as either a
two-digit hex number (one byte), or its ASCII equivilent, in
which case it will appear with a full stop in front (e.g. 41
will appear as .A in an ASCII Dump). To change the memory
contents, hit ESC, and the prompt > will return. Move the
cursor over the line you want to edit, then COPY to the point on
the line where you want to make the change. You may then type in
EITHER the ASCII equivilent with a dot in front OR the twodigit
hex number, and this may be done as many times as you wish along
the line. At the end of the line hit RETURN and ESC. DO NOT edit
more than one line at a time without hitting RETURN and ESC. You
need not go to the end of the line before hitting RETURN-the
rest of the line will copy automatically.This method of
editing is used in all three of the above modes.

X Y Sp S : Machine code TRACE Function, where xxxx is the hex
address of a machine code program. A,X,Y,Sp,S can be set
before entry.A=Accumulator;X, Y=X and Y stack Sp=stack
pointer(always FF), S=status register. Default is all zeros
except Sp=FF. Type in the command and hit <CR>, then <SHIFT>
executes the next instruction ,but JSR without displaying the
subroutine, while <REPT> shows the actions in the subroutine
(1 these may be tortuous !).The top of the screen displays the
contents of all the registers and all the flags, plus the ASCII
equivilent of Accumulator contents.

[X]: runs the machine code routine pointed to by location hex 180. On its

own this has the effect of LINK (?180,181) or JMP (180). Your
m/c code routine MUST end in JMP #CS55B. However, the real
strength is_that it is possible to put various parameters
after the , and then capture them using the 5,¥Y pointer.
This function then becomes an invaluable development tool for
machine code routines.

APPENDIX 2
- HEX DUMP AND MODIFY

Below is the source code to enable a HEX DUMP of memory contents, and
modification if this is required. This is one of the features found ina
DISATOM ROM . Remember that the m/c code must be resident for it to work,
sodon’'t overwrite it once it has been assembled. LINK to the first code
to activate (here #2800). '

40 V= #70;K= #72;T= #75

50 DIM JJ5;F.I=0T05;JJ(I)=-1;N.
60 PRINT $21

70 FOR X=0 TO 1

80 P= #2800
901

100 LDA @ JJ0/256 | 400 PLA

110 STA #207 410 TAY

120 LDA @ JJ0%256 420 BNEJJ2

130 STA #206 430:333

140 RTS 440 LDX @ V
150:J30 450 JSR #[7D1
160 LDY @ 0 ' 460]

170 STY T 470 $P=" **";P=P+LEN(P)
180 JSR #F876 4801

190 CMP @ CH"*" 490 NOP

200 BEQ JJ1 500 JSR #F7Fl
210 JMP #F8EF 510:JJ4
220:371 520 LDA(V),Y
230 LDA @ 11) 530 JSR #F7FA
240 JSR #FFF4 540 INY

250 LDX @ V , 550 CPY @ 8
260 INY 560 BNE JJ4
270 JSR #F893 570 TYA

280 LDX @ K 580 CLC
290:JJ2 590 ADC V

300 JSR #F876 600 STA V

310 CMP @#0D 610 BCC JJ5
320 BEQ JJ3 620 INC V+1
330 JSR #F893 630:JJ5

340 TYA 640 BIT #B002
350 PHA 650 BVC JJ3
360 LDA K 660 JSR #CS04 .
370 LDY T 670 BNE JJ5
380 STA(V),Y 6801

390 INC T 690 NEXT X;PRINTS6;END

TO OPERATE: type **XXXX. This gives a hex dump of memory
starting at hex xxxx. This may be used to edit the memory as given below.
Pushing <REPEAT> will continue the dump, and <ESC> exits the mode.

EDITING MEMORY: This program displays memory contents as a two-
digit hex number (one byte). To change the memory contents, hit ESC, and
the prompt > will return. Move the cursor over the line you want to edit,
then COPY to the point on the line where you want tomake the change. You
may then type in the two digit hex number, and this may be done as many
times as you wish along the line. At the end of the line hit <RETURN> and
<ESC>. DO NOT edit more than one line at a time without hitting <RETURN>
and <ESC>. You need not go to the end of the line before hitting RETURN-
the rest of the line will copy automatically.

INDEX ToO ROUTINES
(*) Represents a usable routine, (!*!) Recommended routine.

ABS C902 (*)

ADDITION C79D

ALPHANUMERIC CONVERSION C434 (*)
AND C87B

ARRAY PRE-TEST F02E,F04B

ARRAY ADDRESSES F08B

ASCII CHARACTERS F87E

ASSEMBLER FI55, F2Al,F38E
ASSIGNMENTS, NUMERIC C8F8,08DC(*),CA2F(¥*)
ASSIGNMENTS C3ES,CBDC(*)

BGET CF5B(*)

BEUT CF8F

BRACKETS C944

BREAK C2B2(*)

BREAK KEY FF3F(*)

BRK C9D8,FFCO

CARRIAGE RETURN C4E4(*)

CH (ASCII) C9D2 :

CLEAR F67B

COMMAND MEANINGS C279

COMPARE VECTOR FAQB (*)

CONTROL CODES FCEA(*)

COS COMMANDS ,EXECUTION C4GF

COS INTERPRETER F8F0(*)

COS MESSAGES FC38(*)

COS WORDS F8BE

COUNT C97A(*),CA4C(*),SEE 'RAM' 7
DATA C000,C608,F000,F155,F7C9,F8BE,FECE,FF9A et. al.
DECIMAL STRING C465(*)

CECREMENT VECTOR F668(*)

DIM FOAE,F141(*), SEE 'RAM' 23,24
DO CCF0,SEE RAM 13

DOLLAR CEBL(*)

DRAW SEE 'PLOT'

END CD98(*)

EOR C7EF

ERROR HANDLING C9E7(*),SEE 'RAM' 0 + 10,11
ERROR-COS F926 (*)

ESC KEY C504(*)

EVALUATE A FUNCTION C3C8(*),C8BC(*)
FETCH KEYPRESS ~- SEE 'GET'

FETCH NEXT CHAR F291(*),F875(*)
FIELD FLYBACK FE66 (*)

FIN CFAG(*)

FOR CB57, SEE 'RAM' 15

FOUT CFA7(*)

FUNCTION INTERPRETER C22C,C3C8(*),C8BC(*)
GET CF66(*),FE24(*),FET1(*)

GOSUB CBD2,SEE 'RAM' 14

GOTO €CO05

GRAPHICS F6CF

HEX SIGN (#)C90A

IF C566

INCREMENT VECTOR F671(*),FA08(*)
INTERPRET A STATEMENT (!*!)CS5SB

o & o

INPUT BUFFER-SEE 'STRING INPUT BUFFER'
INPUT CDO9(!*!),CC8L

INTEGER VARIABLES CA2F(*),C8D7(*),CA37(*)
IRQ FFB2

KEYPRESS SEE 'GET'

LABEL CClF,CS4A(*), SEE 'RAM'38D - 3C0
LEN C9BD(*)

LET C31B

LINE ENTRY CDC9

LINE NUMBER CClF(*),C54A(*)

'LINE NUMBER SEARCH C62E(*)

LINK C3B2

'LOAD CEED(*)

LOAD FILE F96E,FFEQ(*)

MINUS C8CL(*)

MOVE-SEE 'PLOT'

MULTIPLICATION C813,C661,C6892

NAME F86C

NEGATION C8CL(*)

- NEW C2AD(*)

NEXT CATD

NMI FFC7

NUMERIC ASSIGNMENTS SEE'ASSICHMEUTS'

OoLD FS531

OPERATING SYSTEM VECTORS FFCE AND ONWARD
OR C7D3

"PLING C3EE,CS8FS

PLOT FS542 AND ONWARD

POINT PLOTS FBE2(*)

PRINT ACCUM. CA4C

PRINT CHAR FE32

PRINT COMMAND C334

PRINT F3FE

PRINT ROUTINSS C33F,W/S STACK=C389(*) 302 AS 23CIIL CA4C(*),3CC AS
HEX =F376(%*),¥378,IN-LINE ASCILI F7CL.1*!}, L UMBERS
F7EC(t*1), CHARACTERS FESZi*),w/5 3TRIK AS HEX
C349(*),SEE 'RAM' F

PRINTER SEE CHAPTER 7

PUT CF95(*)

QUESTION MARK C406,C94C

QUOTES CEBl,CZBF(*)

RAM CHECK F1l19 :

"RANDOM NUMBER C986(!*!), SEE 'EXAMFLE3',3Ef *zaM' 3 TO C

READ NUMERIC C465(*),F893
"REM C575

| RESET FF3F(*)

~ RETURN CBEC,C4E4(*),C55B(!*!)

ROM CHECK CA24(*),C54A,CA24

RUBBISH CHECKS C4E4,FA65(*),FAT76(*)

RUN F141(*),CE83(*)

SAVE CFOA(*),FA86,FABB,FAE5,SEE '0/S VECTC:3!
SEMI-COLON C4E4 (*)

SGET CFE3

SPUT CFCS

STEP CBA2

STRING COPY CEBF(*),F818(*)

STRING INPUT BUFFER CEBF(*),CEFA(*),F818(*),6F875(*),F893(*)

~78=

SUBTRACTION C7B7

SYNCHRONISE AT 2.4 KHZ FCDB(*)
TAPE FBEE(*) ,FC7C(*)

TAPE FILES SEE CHAPTER 7

TAPE TITLE CEFA,SEE CHAPTER 7

TEXT AREA SEE 'RAM' 12,CE83(*),F141(*), SEE APPENDX 1'AULD''PAGE"

TEXT POINTER AND OFFSET SEE 'RAM' 5,6 AND 0
TIMING~SEE 'WAIT'

TITLE CEFA(*)

TO CB81 |

TOP C973(*),CD98(*),SEE 'RAM' D,E

TRUTH TEST C70C(*),C714,C722,C731

UNTIL CCD2, SEE ‘DO’

VARIABLES SEE 'INTEGER VARIABLES'

VECTOR COMPARE FAQ8(*)

VECTOR DECREMENT F668(*), INCREMENT F671(*),FAQB(*)
VECTORS-OPERATING FFCB AND ONWARDS
WAIT Fl4C,FB3B(!*!),FE66(*),FCD8(*)

WORKSPACE STACK CAZF(*) C589(*) CA37(*),SEE CHAPS 3+6,SEE 'RAM' 4
AND 16 TO 51 :

i I : —_ -

